Computing Graphene-Fullerene Junctions in Thermoelectric Devices - Centro de Investigación en Nanomateriales y NanotecnologíaCentro de Investigación en Nanomateriales y Nanotecnología
ICT Blog

SPINTRONICS, MOLECULAR ELECTRONICS, MAGNETIC STORAGE DEVICES

26

Jan 2018

Computing Graphene-Fullerene Junctions in Thermoelectric Devices

Posted by / in Blog ICT / No comments yet

Editorial Feature published in AZONANO on our article “Thermoelectricity in vertical graphene-C60-graphene architectures”- Wu Q., et al, Scientific Reports, 2017, DOI:10.1038/s41598-017-10938-2

Recent advances in single-molecule thermoelectricity has isolated and identified different families of high-performance molecules. However, to realize the commercial potential of these molecules and convert them into real-world thin-film energy-harvesting devices, fundamental issues surrounding parallel-aligned junctions within these devices need to be addressed.

A team of Researchers from the UK and Spain have studied a junction composed of two parallel C60 molecules sandwiched between two graphene monolayers, in an attempt to boost the electrical and thermoelectric performance against current single-junction mechanisms.

Molecular devices composed of single or multiple molecules which are bridged by at least two electrodes have gathered a lot of attention from both a theoretical and experimental point of view. Such devices have been found to possess a plethora of properties which facilitate excellent tunability and transport mechanisms, including negative differential resistance (NDR), electrical switching and thermoelectric power generation.

Common thermoelectric materials of the inorganic variety, i.e. Pb, Bi, Co, Sb are toxic and expensive due to finite sources across the globe. So, to circumnavigate the resource shortage, Researchers turned to using single organic molecules, which has worked with great effect so far. But, to prove their commercial value, issues surrounding junctions being placed in parallel need to be resolved.

As a step in the right direction to solving this scientific conundrum, the Researchers believed that a controlled scalability may hold the key. The Researchers have taken to using density functional theory (DFT) calculations to help determine how parallel junctions can be addressed.

The Researchers assembled a four-terminal device at the edges of two graphene sheets which sandwiched two C60 molecules. The terminals were set up as semi-infinite crystalline leads to eliminate edge effects on the graphene sheets. The Researchers used a code called SIESTA to obtain the optimized geometry and density approximation, and used a transport code named GOLLUM to compute the electrical and thermoelectric properties of the devices from the mean-field Hamiltonian and overlap matrices. The Researchers chose a double-z plus polarization (DZP) basis set for their calculations.

The Researchers investigated the properties of the C60 molecules by placing them parallel to each other and sandwiched between the two graphene sheet electrodes. Unlike in classical conductors, the Researchers found that increasing the number of parallel junctions from one to two caused the electrical conductivity to increase by at least a factor of two.

The Researchers also found that the Seebeck coefficient, i.e. the thermoelectric power or thermoelectric sensitivity, is sensitive to the number of molecules sandwiched between the electrodes. In classical conductors, the sensitivity would not change. The Seebeck coefficient sensitivity was also shown to not be proportional to the increase of parallel molecules.

Continue reading…

 

Please select the social network you want to share this page with:

We like you too :)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec tincidunt dapibus dui, necimas condimentum ante auctor vitae. Praesent id magna eget libero consequat mollis.

SIMILAR POSTS
No comments yet

Enter the Discussion and post your Comment

CAPTCHA Image

*